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Abstract In this work we have shown how an applied mechanical force affects an
oligomeric enzyme kinetics in a chemiostatic condition where the statistical charac-
teristics of random walk of the substrate molecules over a finite number of active
sites of the enzyme plays important contributing factors in governing the overall rate
and nonequilibrium thermodynamic properties. The analytical results are supported
by the simulation of single trajectory based approach of entropy production using
Gillespie’s stochastic algorithm. This microscopic numerical approach not only gives
the macroscopic entropy production from the mean of the distribution of entropy pro-
duction which depends on the force but also a broadening of the distribution by the
applied mechanical force, a kind of power broadening. In the nonequilibrium steady
state (NESS), both the mean and the variance of the distribution increases and then
saturates with the rise in applied force corresponding to the situation when the net rate
of product formation reaches a limiting value with an activationless transition. The
effect of the system-size and force on the entropy production distribution is shown to
be constrained by the detailed fluctuation theorem.

Keywords Oligomeric enzyme kinetics · Nonequilibrium steady state · Single
trajectory analysis · Fluctuation theorem

1 Introduction

In the last few years, stochastic non-equilibrium dynamics have become a major
research area to describe the thermodynamics of the mechanochemical processes at
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the single molecule level [1–11]. One can attach a molecule to the tip of a cantilever
of an atomic force microscope to apply the external mechanical force on a single
molecule which can drive the whole system far away from equilibrium. Very often
this force can change the thermodynamic stability of a molecule and can modify the
reaction rates [12,13]. To describe the effect of force and to give the thermodynamic
description of such non-equilibrium single molecule processes, trajectory analysis is
the standard tool already developed in stochastic non-equilibrium thermodynamics
[8,10,11]. Trajectory analysis gives fundamental relations known as the fluctuation
theorems describing the statistical fluctuations in time-averaged properties of many-
particle systems in far away from equilibrium states [14–25]. Using these relations one
can understand how macroscopic irreversibility emerges from microscopically revers-
ible dynamics [16,26]. Stochastic trajectory approach has been successfully applied to
various systems, e.g, chemical reaction networks [27], driven colloidal particles [28],
single two level systems [29] and also single bio-molecular reactions [30,31].

Although mechanical stress is known to profoundly influence the composition and
structure of the proteins and enzyme, the mechanism of the force induced chemical
processes [32–35] can ideally be probed through the single molecule reaction [36–38].
Recently Fernandez et al. [32,33] and Gumpp et al. [34] have opened a new avenue
to study the direct influence of external mechanical force to manipulate the biocata-
lytic reaction of an enzyme by triggering the enzymatic activity through atomic force
microscopy (AFM). In this context, we have theoretically studied the effect of external
mechanical force on a single oligomeric enzyme kinetics at a chemiostatic condition
with the substrate and product concentrations remaining constant [39].It was found
that the net rate of the reaction averaged over several turn over cycles in chemiostatic
condition was multiplied by the number of active sites and got further enhanced by
more than two orders of magnitude with the application of 10–100 pN force [39].

Here we have studied the nonequilibrium thermodynamic properties of an external
force induced oligomeric enzyme catalysis. The statistical characteristics of binding
of substrate molecules over a finite number of active sites on a single enzyme is for-
mulated through a master equation which is used to calculate the entropy production.
We have also numerically obtained the microscopic picture of the entropy production
through the single stochastic trajectory analysis [18,27,28,40] using the Gillespie’s
stochastic simulation approach. Although in the recent literature a great deal of effort
has been utilized on the exploration of the validity of the fluctuation theorem in various
mechanical and chemical systems, the attempt to find out the nonequilibrium dynam-
ical properties as a consequence of the fluctuation theorem is not yet explored with
its full potential. Here it is shown how the trajectory based approach can provide the
effect of mechanical force in terms of the distribution of the entropy production that
can not be obtained from the analytical method of calculation of entropy production
specially for the small system.

The paper is organized as follows. In Sect. 2, we have provided the scheme of the
reaction and the master equation suitable for the calculation of the various entropy
production rates. The simulation procedure for the single trajectory entropy calcula-
tion is described in Sect. 3. The numerical results of the various entropy productions
of the reaction system as a function of the force parameter are discussed in Sect. 4.
The paper is concluded in Sect. 5.
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2 Description of single oligomeric enzyme kinetics and entropy production

In this section, first we have provided the master equation describing the single olig-
omeric enzyme kinetics suitable for the calculation of entropy production. Then from
the traditional approach the corresponding expressions of the system, medium and
total entropy production rates are given from the overall dynamics of the reaction.

2.1 Scheme of the reaction and the master equation

Single molecule enzyme kinetics are usually studied at the chemiostatic condition
where the concentrations of substrate, S and product, P are maintained at constant val-
ues. In chemiostatic condition, the traditional bulk enzyme kinetics reaction scheme
(see Fig. 1a) can be reformulated in a simplified manner which is shown in Fig. 1b. In
our case, the oligomeric enzyme consists of nT number of identical subunits and each
sub-unit has one active site. The subunits are linked through extra covalent bonding
by using some cross linking reagents [41]. As each active site can form one ES-com-
plex, so the reaction scheme can be viewed in terms of the number of total active sites
present at a particular time in the oligomeric enzyme. Here, the active sites which have
already formed ES-complex are referred to as occupied sites and those lying vacant
at that moment are called the vacant sites.The scheme of the oligomeric enzyme cata-
lyzed reaction in bulk and in chemiostatic condition are depicted in Fig. 1c, d. The rate
constants K1 = (k1 + k2) and K2 = (k−1 + k−2) are designated as the total forward
and backward rate constants. The pseudo first order rate constants k1 and k2 are given
by k1 = k′

1[S] and k2 = k′
2[P].

The enzymatic activity can be manipulated by applying an external mechanical
force. Here we have considered that a constant external mechanical force is applied on
the single oligomeric enzyme at the chemiostatic condition. The external force helps
to increase the dissociation of the ES complex because it decreases the activation
barrier of breaking the ES complex. Following Bell’s theory [42], we consider that
if a constant external pulling force F is applied on the oligomeric enzyme, then the
bonds between the identical active sites of the enzyme and the substrates experience
the force, F cosθ as shown in Fig. 2. Here we consider that each identical bond expe-
riences the same magnitude of force Fcosθ , so the energy required to break a bond
which is between one active site of the enzyme and a substrate is F Xbcosθ , where
Xb is the minimum elongation of a bond for dissociation. Here, a typical magnitude
of Xb of 0.5Å is sufficient for bond rupture. The modified dissociation rate constants
are given as k(f)

−1,−2 = k−1,−2ef where f = (FXbcosθ/kBT) [39,42].
The oligomeric enzyme kinetics reaction consists of four reaction channels or sub-

reactions (see Fig. 1c). Due to the random occurrence of various reaction channels,
the number of occupied sites becomes a fluctuating quantity. If at time t, n number
of occupied sites are present in the system, i.e, the system is in the nth occupied
state, then after a small time τ , the system goes to a new state, (n + νμ) through
any one of the four possible sub-reactions. Here νμ is designated as the stoichiom-
etric coefficient of the μth reaction with rate constant kμ. Now among nT number
of total active sites, if n number of sites form ES-complex at time t and (nT − n)
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Fig. 1 Kinetic scheme of an enzyme having only one subunit is shown in bulk in (a) and in chemiostatic
condition (b). Similar types of reaction schemes are represented for oligomeric enzyme having more than
one subunit in (c, d), respectively. The rate constants K1 = (k1 +k2) and K2 = (k−1 +k−2) are designated
as the total forward and backward rate constants. The pseudo first order rate constants k1 and k2 are given
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Fig. 2 a The plot depicts the activation energy, Eb as a function of the extension of bond along which the
bond is ruptured. Here F is the externally applied mechanical force and Xb is the minimum elongation of
the bond for dissociation. The force reduces the activation energy for the ES-complex dissociation and for
large enough force, the dissociation becomes almost activationless. b The direction of the externally applied
mechanical force makes an angle θ with the ES bond direction, so each bond between an active site of the
enzyme and a substrate experience the force Fcosθ
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number of sites remain vacant, then the stochastic master equation can be writ-
ten as

dP(n,t)

dt
=

±2∑

μ=±1

[wμ(n − νμ|n)P(n − νμ, t) − w−μ(n|n − νμ)P(n, t)] (1)

where νμ = 1 with μ > 0 and −νμ = 1 with μ < 0; P(n, t) is the probability of
having n number of occupied states at time t. The transition probabilities are defined
as follows,

wμ(n − νμ|n) = kμ(nT − (n − νμ)), μ > 0

and

wμ(n − νμ|n) = kμ(n − νμ), μ < 0. (2)

Then Eq. (1) can be rewritten as

dP(n,t)

dt
= K1(nT − n + 1)P(n − 1, t) + K2(n + 1)P(n + 1, t)

−K1(nT − n)P(n, t) − K2nP(n, t). (3)

Solving the master equation by the standard approach of generating function method
[39,43,44], we get the probability distribution function as

P(n,t) = nT!
n!(nT − n)!XnYnT−n (4)

where X = K1(1−exp(−(K1+K2)t))
K1+K2

, Y = K2+K1exp(−(K1+K2)t)
K1+K2

, assuming that initially all
the active sites are unoccupied. With this initial condition, the time-dependent average
number of occupied sites is given by 〈n〉(t) = nTX and the average number of vacant
sites is 〈nT − n〉(t) = nTY.

2.2 Entropy production rates from the master equation

The system entropy is defined in terms of the Shannon entropy as,

Ssys(t) = −kB

∑

n

P(n, t)lnP(n, t). (5)

123



J Math Chem (2013) 51:588–602 593

We set the Boltzmann constant, kB = 1. Using the above master equation, we get the
system entropy production rate [40,45–47] as

Ṡsys(t) = 1

2

∑

n,μ

[wμ(n − νμ|n)P(n − νμ, t) − w−μ(n|n − νμ)P(n, t)]

×ln
P(n − νμ, t)

P(n, t)
. (6)

We have assumed ideal reservoir (surroundings) with no inherent ep except through
the boundaries of the system. The system entropy production rate can be split as [46]

Ṡsys(t) = Ṡtot(t) − Ṡm(t). (7)

Here the first term in the r.h.s. of Eq. (7) gives the total entropy production rate and
the second term denotes the medium entropy production rate due to the entropy flux
into the surroundings. Therefore the total and medium entropy production rates are
defined as

Ṡtot(t) = 1

2

∑

n,μ

[wμ(n − νμ|n)P(n − νμ, t) − w−μ(n|n − νμ)P(n,t)]

×ln
wμ(n − νμ|n)P(n − νμ, t)

w−μ(n|n − νμ)P(n,t)
(8)

and

Ṡm(t) = 1

2

∑

n,μ

[wμ(n − νμ|n)P(n − νμ, t) − w−μ(n|n − νμ)P(n, t)]

×ln
wμ(n − νμ|n)

w−μ(n|n − νμ)
. (9)

Using the expressions of the corresponding transition probabilities from Eq. (2) and
the time dependent solution of the master equation, we finally obtain,

Ṡtot(t) = 〈n(t)〉
[

k−1ln

(
k−1X

k1Y

)
+ k−2ln

(
k−2X

k2Y

)]

−〈nT − n(t)〉
[

k1ln

(
k−1X

k1Y

)
+ k2ln

(
k−2X

k2Y

)]
. (10)

Now at the NESS, we use the condition of equality of forward and backward cycle
flux instead of detailed balance condition [48]. Therefore, from Eq. (1), we obtain

w1(n − 1|n)P(n − 1) − w−1(n|n − 1)P(n)

= w−2(n|n − 1)P(n) − w2(n − 1|n)P(n − 1). (11)
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By using Eq. (11 ) in Eq. (8), we obtain the total entropy production rate at the steady
state as

Ṡ(ss)
tot =

∑

n

[
w1(n − 1|n)P(n − 1) − w−1(n|n − 1)P(n)]

×ln

(
w1(n − 1|n)P(n − 1) × w−2(n|n − 1)P(n)

w−1(n|n − 1)P(n) × w2(n − 1|n)P(n-1)

)
. (12)

After putting the values of the transition probabilities, 〈n〉 and 〈(nT − n)〉 at the steady
state we obtain

Ṡ(ss)
tot = nTln

(
k−1k2

k1k−2

) [(
k2k−1 − k1k−2

k1 + k−1 + k2 + k−2

)]
. (13)

At
(

k−1k2

k1k−2

)
= 1, Ṡ(ss)

tot becomes zero and the steady state corresponds to the detailed

balance condition that holds in equilibrium. However, we are in general interested in

the entropy production in the nonequilibrium steady state where
(

k−1k2

k1k−2

)
�= 1. Inte-

grating Ṡtot between the time interval t0 = 0 to t, we get the total entropy production,
�Stot. As we have considered that initially (time t0 = 0) all the sub-units are vacant,
i.e, n = 0 with P(n, 0) = 1, therefore, from Eq. 5, Ssys = 0 in the beginning.

3 Single trajectory analysis of entropy production and fluctuation theorem

In the previous section, the calculated total entropy production from the master equa-
tion is actually an average property. However, for a small system the fluctuation is as
important as the average and from this to get an idea about the distribution we have
calculated the total entropy production of an ensemble of trajectories. For a single
trajectory, the system can be quantified in terms of the time series of the number of
occupied sites of the oligomeric enzyme which is a fluctuating quantity due to the
random occurrence of the reaction events within a short time interval. The time series
of the number of occupied sites is calculated by using the Gillespie stochastic sim-
ulation approach [50,51].The simulated single trajectory of forward and backward
path is used to calculate the total entropy production which varies from trajectory to
trajectory as it is a fluctuating quantity.

Let us consider a stochastic trajectory of the number of occupied sites, n(t) which
starts at n0 and jumping at times tj from nj−1 to nj ending up at nl with t = tl,

n(t) ≡ (n0, t0)
ν1
μ→ (n1, t1)

ν2
μ→ · · · → (nj−1, tj−1)

νμ
j

→ (nj, tj) → · · · → (nl−1, tl−1)
νμ

l

→ (nl, tl). (14)

Here nj = nj−1 + ν
j
μ and tj = tj−1 + τj where τj is the time interval between two suc-

cessive jumps and j is the population state at time t. During the jump from the (nj − 1)

123



J Math Chem (2013) 51:588–602 595

state to the nj state, any one of the four sub-reactions will occur and the time interval
τj between the two jumps is a random variable following the exponential distribution

p(τj) = a exp(−aτj) (15)

with a = ∑±2
μ=±1 w(nj−1; ν

j
μ) and w(nj−1; ν

j
μ) denotes the transition probability from

the state (nj − 1) to the nj state through a reaction channel μ with the stoichiometric

coefficient ν
j
μ along a single trajectory.

Now a time reversed trajectory can be defined as,

nR(t) ≡ (nl, tl)
−νμ

l

→ (nl−1, tl−1)
−νμ

l−1

→ · · · → (nj, tj)

−νμ
j

→ (nj−1, tj−1)· · · → (n1, t1)
−νμ

1

→ (n0, t0). (16)

This time reversed trajectory is generated due to the occurrence of a reaction channel
whose state changing vector −ν

j
μ is exactly opposite to the state changing vector ν

j
μ

of the forward reaction channel.
The entropy production along a single stochastic trajectory can be defined as [28]

s(t) = −ln P(n, t) (17)

where P(n, t) is the solution of the stochastic master equation for a given initial condi-
tion, P(n0, t0), taken along the specific trajectory n(t). Note that, the single trajectory
entropy is denoted by s whereas the average entropy production, whether being an
ensemble average obtained from the master equation or averaged over many trajecto-
ries generated in the simulation, is denoted by S. Now the time dependent total entropy
production, �stot can be split into a system part, �ssys and a medium contribution,
�sm. Hence the change in total entropy along a trajectory can be written as [28,49,52]

�stot = �sm + �ssys (18)

where

�ssys = ln
P(n0, t0)

P(n, t)
(19)

and

�sm =
∑

j

ln
w

(
nj−1; ν

j
μ

)

w
(

nj;−ν
j
μ

) . (20)

The ratio of probabilities of the forward trajectory path, p(n(t)|n(t0)) and that of the
backward trajectory path, p(nR(t)|nl) of the reaction system is given by the quantity
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e�stot , obtained by applying the stochastic simulation approach. For different trajec-
tories we get different total entropy production values and among them some values
may be negative, but the average total entropy production value must be positive. As
the total entropy production values differ from trajectory to trajectory, so we get a dis-
tribution, p(�stot). When the system reaches a steady state, the detailed fluctuation
theorem is satisfied as

p(�stot)

p(−�stot)
= e�stot . (21)

Here we have studied the probability distribution function of entropy production in
terms of the mean and variance of the distribution in the transient and steady state
regime. We have numerically investigated how the negative values of total entropy
appears in a single trajectory due to the applied force and the total number of active
sites of the oligomeric enzyme or the system-size of the problem.

4 Numerical result and discussion

In this section we have calculated the entropy production, the average number of
substrate binding and the net velocity of the reaction in the dynamic regime and non-
equilibrium steady state for different applied forces. To obtain the medium entropy
production as well as the distribution of the total entropy production we have con-
structed the time series of the number of occupied sites on the basis of single trajectory
concept and it is adapted with the Gillespie’s stochastic simulation approach.We have
also studied the variation of mean, variance and the relative variance of the distribution
with function of force at NESS. The studies at NESS give an important correspon-
dence between the total entropy production rate and the net velocity of the reaction.
To calculate the average substrate binding, 〈n〉(t), the net velocity of the reaction and
the various entropy production rates, we have taken the rate parameters as k1 = 15,
k−1 = 7, k−2 = 2 and k2 = 1, all in s−1, for both analytical and numerical studies.
The total number of subunits of the single oligomeric enzyme is taken as nT = 20.

Here we have determined the system and the medium entropy productions, for a
single trajectory using the Gillespie’s stochastic simulation approach. The correspond-
ing macroscopic (ensemble average) quantities are then calculated from the averaging
over the trajectories ( 2×105 in number) obtained from the simulation. We have plotted
�Sm, �Ssys and �Stot in Fig. 3 as a function of time determined at different forces.
The time evolution of average number of occupied sites, 〈n〉(t) at different forces are
also shown. �Stot and 〈n〉 are determined from the simulation as well as from the
analytical expression to provide a check of the simulation results. Now the determina-
tion of �Ssys from Eq. (19) uses the analytical solution of the master equation, P(n, t)
at various points of time.The plot of �Sm, as shown in Fig. 3a, increases with time,
initially at a faster rate for lower value of force but eventually the rate becomes higher
for the larger force. �Stot, obtained from simulation as well as from Eq. (10), shows
similar behavior as a function of the force parameter regarding the values at short and
long times as shown in Fig. 3c. In Fig. 3b, we have plotted the variation of �Ssys. After
a small time, �Ssys reaches a steady value as the reaction system reaches the NESS.
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Fig. 3 Plot of a �Sm, b �Ssys, c �Stot and d 〈n〉(t) versus time for force parameters, F = 0 and F = 30
pN. The rate parameters are the same as given in Fig. 1 caption

With increase in force, it reaches the steady value earlier and the magnitude of �Ssys
decreases with increase in force. As the magnitude of �Ssys is small compared to the
value of �Sm, hence the nature of the curve of �Sm versus time follows the �Stot
versus time plot and at the NESS they grow linear in time. At t → ∞, �Sm → �Stot
which is very useful when �Ssys is not known, for example, when no rate equation is
available although the detailed steps of the reaction may be known. Finally, one can
see from Fig. 3d that 〈n〉(t) decreases significantly with the application of force as the
force increases the dissociation rate of the ES-complex. Its variation with time and
the force is similar to that of �Ssys. It is evident from the figures that the transient
and NESS characteristics of the reaction are exactly followed by the system entropy
production. However, the medium entropy production which is mainly concerned with
the flow through the boundaries of the system, actually takes care of the total entropy
production at NESS when the system property saturates; one can identify the boundary
effect of the system by its size and physical or chemical nature of interactions between
the system and surroundings in terms of the medium entropy.

The entropy production, �stot along a single trajectory is a fluctuating quantity; it
has a distribution, p(�stot), which is shown in Fig. 4a, b at different time intervals for
force values F = 0 and F = 30 pN, respectively with nT = 20. At short times, the
distribution is non-Gaussian in nature but gradually tends to a Gaussian distribution
which is obtained due to the chemiostatic condition of the open system at NESS. It is
evident from the figure that initially there is a non-zero probability of observing nega-
tive values of �stot for a particular trajectory with F = 30 pN whereas for F = 0 pN,
such probability is zero for the rate parameters considered here. We have found that
with rise in the magnitude of the force, the probability of observing negative values
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Fig. 4 The distribution of the total entropy production over trajectories, p(�stot) versus �stot is plotted
for different times in (a, b) with force, F = 0 and F = 30 pN, respectively with nT = 20. The corresponding
plots for nT = 5 are shown in (c, d)

of �stot first increases but then saturates (not shown in figures). Although the mean
value can be obtained from the master equation, the broadening of the distribution
due to the increase in external force can only be realized through the trajectory based
method.

By comparing the distributions in Fig. 4a, b at different times, one can see that the
overall distribution quickly shifts to the positive zone reaching larger positive values
with increased force. These simulation results provide the microscopic basis for the
macroscopic result of the initially lower �Stot for higher forces and explains how �Stot
becomes higher for the same higher forces at some later time. The larger probability
for negative �stot values under the p(�stot) distribution curve at higher forces brings
the average value, �Stot down at short times. Now similar results are given in Fig. 4c,
d for nT = 5. By comparing these plots with those for nT = 20 reveals that for lower
system size, there is a larger probability to realize entropy consuming trajectories as
here the distribution, p(�stot) can initially span larger negative regions, particularly at
higher forces. The total entropy production distribution for nT = 5 is always shifted
to the left compared to that for nT = 20 and this gives the microscopic basis of the
extensive nature of the entropy production.

With decrease in the system size the probability of obtaining the entropy consum-
ing trajectories is increased. It is customary to have a finite region of the distribu-
tion, p(�stot) with negative values of �stot to explicitly show the detailed fluctuation
theorem at steady state [25]. Initially, with increase in the value of rate parameter
k2 increases the probability of finding the entropy consuming trajectories. We have
observed that in the ideal Michaelis–Menten type enzyme kinetics reaction where k2
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value is very very small, probability of obtaining the entropy consuming trajectories
is almost zero. It is also important to note that with increase in the values of force
parameters, probability of entropy consuming trajectories is increased and that’s why
we have verified the fluctuation theorem at force F = 30 and F = 50 pN which is shown
in Fig. 5. We have plotted, ln p(�stot)

p(−�stot)
versus �stot in the range −10 < �stot < 10

for nT = 20 in Fig. 5a, b at F = 30 and F = 50 pN, respectively and for nT = 5 in
Fig. 5c, d for the same force values. It is evident from the figure that the total entropy
production of the reaction system satisfy the detailed fluctuation theorem at the steady
state.

From the simulation data, we also analyze the variance and the mean of the total
entropy production distribution, p(�stot). The mean total entropy production is obvi-
ously equal to the results already obtained from the analytical approach. Now from
Fig. 6a, we see that both the mean and the variance of p(�stot), determined at the
NESS, first increases but then saturates with the applied force. The saturation at large
force is associated with almost instantaneous dissociation of the ES-complex when the
net rate of product formation reaches a limiting value with an activationless transition
[39]. The relative variance of the distribution decreases with the external force at the
NESS which is shown in Fig. 6b. It indicates that the higher force makes the system
more deterministic. Due to the high dissociation rate, a ES-complex breaks readily
immediately after formation. So the population of the occupied state mainly oscillates
between 0 and 1 and the system behaves more deterministically.

We have also shown the time evolution of the variance in Fig. 6c at three different
forces, F = 0, F = 10 and F = 30 pN. It is evident that except some transient behavior,
the variance increases linearly with time as the system reaches and stays at the NESS.
It amounts to the fact that the entropy production distribution obeys a driven diffusion
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Fig. 7 a Plot of total entropy production versus substrate at NESS with force values F = 0, F = 10 and
F = 30 pN. b The evolution of net velocity, vnet with substrate is plotted at NESS for same force values

process at the NESS with a time-independent diffusion coefficient which implies the
variance of entropy production distribution increases linearly with time for a partic-
ular value of applied force. The diffusion coefficient increases with increase in force
before going to saturation.The mean and variance of the Gaussian distribution of the
total entropy production at NESS behaves almost in a similar fashion with the applied
force.

We have also calculated the total entropy production rate at NESS as a function of
the substrate population for different force values. The rate increases with substrate
population in a hyperbolic fashion as is usually observed both in the bulk and single
enzyme catalysis and the rise of force makes the entropy production rate larger. We
have compared this entropy production rate variation with the corresponding variation
of the net velocity of the reaction, vnet in Fig. 7a, b. It is evident that vnet rises with the
substrate population and the applied force in a similar manner as that of the entropy
production rate. From Figs. 3 and 7, it is evident that reaction characteristics follow
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the �Ssys curve as a function of time whereas at the NESS, they follow the �Stot curve
as a function of the substrate population.

5 Conclusion

In this work, we have studied the entropy production rate for a single oligomeric
enzyme kinetics under chemiostatic condition with an externally controllable mechan-
ical force that affects the net rate of the product formation through the substrate binding.
The progress of the reaction is described through a chemical master equation. To get
a microscopic view, we have also used the single stochastic trajectory approach of
calculating the entropy production with Gillespie’s stochastic simulation algorithm.

We have thoroughly analyzed the effect of the external force on the reaction char-
acteristics like the net velocity and the eps. At the nonequilibrium steady state the rate
of the reaction and entropy production rate follow the similar hyperbolic trend with
substrate population for various forces. We have found that the time-variation of the
system entropy production is qualitatively similar to that of the average substrate bind-
ing at different forces. From the single trajectory stochastic simulation data, we have
analyzed the evolution of the distribution of the total entropy production as a function
of time and the applied force. We have found that with increase in force, an increased
probability of entropy consuming trajectories can be obtained which becomes more
prominent for lower system-size. All these results are constrained by the detailed fluc-
tuation theorem which maintains the corresponding entropy production distribution.

The mean value of the distribution of entropy production obtained from the ensem-
ble of single trajectories corresponds to the results obtained from the master equation.
However, it indicates a new effect of the external force on the distribution of entropy
production which is akin to power broadening of the distribution. The variance of
entropy production increases linearly with time for a particular value of applied force
indicating that the entropy production distribution obeys a a driven diffusion equation
at the NESS. Both the mean and the variance of the Gaussian distribution of entropy
production, determined at a particular instant of NESS, first increases but then sat-
urates with the rise in applied force. This is due to the instantaneous dissociation
of the ES-complex when the net rate of product formation reaches a limiting value
with a ‘barrierless’ transition. In mechanochemistry, an external force being another
controllable thermodynamic variable over the traditional variables of temperature and
pressure, which can be used to find out the variance of the entropy production in small
systems where the fluctuation is as important as the mean value.
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